Published Manuscripts Based on
NCDR Registries

May 2017
Published Registry Manuscripts

Table of Contents (TOC)

<table>
<thead>
<tr>
<th>Registry</th>
<th>Published</th>
<th>In Press</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTION Registry®</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PUBLISHED</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>IN PRESS</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>CathPCI Registry®</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>PUBLISHED</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>IN PRESS</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>ICD Registry™</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>PUBLISHED</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>IN PRESS</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>CARE Registry®</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>PUBLISHED</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>IN PRESS</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>IMPACT Registry®</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>PUBLISHED</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>IN PRESS</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>PINNACLE Registry®</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>PUBLISHED</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>IN PRESS</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>TVT Registry</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>PUBLISHED</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>IN PRESS</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>NCDR-wide Publications</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>PUBLISHED</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>IN PRESS</td>
<td>46</td>
<td></td>
</tr>
</tbody>
</table>
NCDR® Registry Manuscripts

Legend

Manuscript Status is designated as follows:

- Published/Full Citation Provided: Manuscript is in print.
- In Press: Manuscript accepted for publication but has not yet appeared in print or on-line.

Abbreviations:

- Am J Cardiol: American Journal of Cardiology
- Am Heart J: American Heart Journal
- Br Med J: British Medical Journal
- Catheter Cardiovasc Interv: Catheterization and Cardiovascular Interventions.
- Circulation: Circulation
- Circ: Interv: Circulation: Cardiovascular Interventions
- Circulation: Cardiovasc Qual Outcomes: Circulation: Cardiovascular Quality and Outcomes
- Clin Med Res: Clinical Medicine and Research
- Heart Rhythm: Heart Rhythm
- J Am Coll Cardiol: Journal of the American College of Cardiology
- JACC Cardiovasc Interv: Journal of the American College of Cardiology: Cardiovascular Interventions
- JACC Imaging: Journal of the American College of Cardiology: Cardiovascular Imaging
- JAMA: Journal of the American Medical Association
- J Invas Cardiol: Journal of Invasive Cardiology
- Journal Biomed Inform: Journal of Biomedical Informatics
- NEJM: New England Journal of Medicine
- Pharmacoepidemiol Drug Saf: Pharmacoepidemiology and Drug Safety
ACTION Registry®

PUBLISHED

1. Pandey A, Golwala H, Hall HM, et al; Association of US Centers for Medicare and Medicaid Services Hospital 30-day Risk-Standardized Readmission Metric With Care Quality and Outcomes After Acute Myocardial Infarction: Findings From the National Cardiovascular Data Registry/Acute Coronary Treatment and Intervention Outcomes Network Registry-Get With the Guidelines; JAMA Cardiology; 2017/4/26

2. Miller AL, Simon D, Roe MT, et al; Comparison of Delay Times from Symptom Onset to Medical Contact in Blacks Versus Whites With Acute Myocardial Infarction; AJC; April 15, 2017Volume 119, Issue 8, Pages 1127–1134

3. Pokorney SD, Miller AL, Chen AY, et al; Reassessment of Cardiac Function and Implantable Cardioverter-Defibrillator Use Among Medicare Patients With Low Ejection Fraction After Myocardial Infarction; CIRC;2017;135:38–47.

4. Roswell, RO; Kunkes, J; Chen AY; et al; Impact of Sex and Contact-to-Device Time on Clinical Outcomes in Acute ST-Segment Elevation Myocardial Infarction—Findings From the National Cardiovascular Data Registry; 2017; 6:e004521

9. Anstey, DE, Li, S, Thomas, L, et al; Race and Sex Differences in Management and Outcomes of Patients After ST-Elevation and Non-ST-Elevation Myocardial Infarct: Results From the NCDR; Clinical Cardiology; 7/282016

10. McNamara RL, Kennedy, KF, Cohen, DJ, et al; Predicting In-Hospital Mortality in Patients With Acute Myocardial Infarction; JACC; 2016; Vol. 68; No. 6
11. **127.** Fordyce, CB, Wang, TY, Chen, AY, et al; Long-Term Post-Discharge Risks in Older Survivors of Myocardial Infarction With and Without Out-of-Hospital Cardiac Arrest; JACC; 2016; Vol. 67; No. 17

25. **203A.** Pokorney SD, Miller AL, Chen AY, et al. Implantable Cardioverter-Defibrillator Use Among

27. **176A.** Paixao A. Risk Factor Burden and Control at the Time of Admission in Patients with Acute Myocardial Infarction: Results from the National Cardiovascular Data Registry. AHJ, Volume 170, Issue 1, Pages 173–179.e1.

39. **085A.** Xian Y, Chen AY, Thomas L, et al. Sources of Hospital-Level Variation in Major Bleeding Among Patients With Non-ST-Segment Elevation Myocardial Infarction: A Report From the National...

40. **151A.** Mumma Bryn E., Kontos Michael C., Peng S. Andrew, Diercks Deborah B., Association Between Prehospital ECG Use and Patient Home Distance from the PCI Center on Total Reperfusion Time in STEMI Patients: A Retrospective Analysis from the NCDR, American Heart Journal (2014), doi: 10.1016/j.ahj.2014.03.014

61. **066A-B.** Hanna EB, Chen AY, Roe MT, et al. Characteristics and in-hospital outcomes of
patients presenting with non–ST-segment elevation myocardial infarction found to have significant coronary artery disease on coronary angiography and managed medically: Stratification according to renal function. Am Heart J. Volume 164, Issue 1, Pages 52-57.e1, July 2012.

62. **031A.** Maddox TM, Ho PM, Tsai TT, et al. Clopidogrel Use and Hospital Quality in Medically Managed Patients With Non-ST-Segment-Elevation Myocardial Infarction. CIRC Cardiovasc Qual Outcomes. 2012;5 523-531

64. **059A.** Piña IL, Cohen MG, Rodriguez CJ, et al. Differences in Treatment Patterns and Outcomes Between Hispanics and Infarction: Results From the NCDR ACTION Registry GWTG Non-Hispanic Whites Treated for ST-Segment Elevation Myocardial Infarction. JACC. 2012;59: 630-631.

71. **069A.** Wiviott SD, Saucedo JF, Antman EM, et al. Use of Emergency Medical Service Transport Among Patients With ST-Segment–Elevation Myocardial Infarction Findings From the National
Cardiovascular Data Registry Acute Coronary Treatment Intervention Outcomes Network Registry—

with Reperfusion Delays and Outcomes Among Patients Transferred for Primary Percutaneous
Coronary Intervention. JAMA. 2011; 305(24); 3540-3547.

73. **019A.** Abtahan F, Olenchok B, Ou FS, et al. Effect of prior stroke on the use of evidence-
based therapies and in-hospital outcomes in patients with myocardial infarction (from the NCDR ACTION

74. **021A.** Kontos MC, Diercks DB, Ho PM, et al. Treatment and outcomes in patients with myocardial
infarction treated with acute β-blocker therapy: Results from the American College of Cardiology’s

75. **055A.** Don CW, Roe, MT, Li S, et al. Temporal trends and practice variations in clopidogrel
loading doses in patients with non–ST-segment elevation myocardial infarction, from the National

76. **068A.** Britton KA, Aggarwal V, ChenAY, et al. No association between hemoglobin A1c and in-
hospital mortality in patients with diabetes and acute myocardial infarction. Am Heart J. Volume
161, Issue 4, April 2011, Pages 657-663.

77. **071A.** Mathews R, Peterson ED, Chen AY, et al. In-Hospital Major Bleeding During ST-
Elevation and Non-ST-Elevation Myocardial Infarction Care: Derivation and Validation of a

78. **058A.** Chin CT, Chen AY, Wang TY, et al. Risk adjustment for in-hospital mortality of
contemporary patients with acute myocardial infarction: the acute coronary treatment and
intervention outcomes network (ACTION) registry-get with the guidelines (GWTG) acute

Feedback to Facilitate Quality Improvement in Acute Myocardial Infarction Care. Circ

80. **022A.** Kontos MC, de Lemos JA, Ou FS, et al. Troponin-positive, MB-negative patients with non-
ST-elevation myocardial infarction: An undertreated but high-risk patient group: Results from the
National Cardiovascular Data Registry Acute Coronary Treatment and Intervention Outcomes
Network-Get With The Guidelines (NCDR ACTION-GWTG) Registry. Am Heart J.

with quality of care of patients with non-ST-segment elevation myocardial infarction: a report from the
National Cardiovascular Data Registry Acute Coronary Treatment and Intervention Outcomes
Network Registry-Get With The Guidelines. Am Heart J. 2010

84. **036A.** Forman DE, Chen AY, Wiviott SD, et al. Comparison of outcomes in patients aged <75, 75 to
84, and ≥ 85 years with ST-elevation myocardial infarction (from the ACTION Registry- GWTG). Am

intervention from 2006 to 2008: results from the can rapid risk stratification of unstable angina patients supress Adverse outcomes with early implementation of the ACC/AHA guidelines (CRUSADE) and acute coronary treatment and intervention outcomes network-get with the guidelines (ACTION-GWTG) registries. CIRC: Cardiovasc Qual Outcomes. 2009 Sep;2(5):414-20.

IN PRESS

1. **148. Neeland: Impact of Body Mass Index and Extreme Obesity on Long Term Outcomes in Older Adults with ST-Segment Elevation Myocardial Infarction: Results from the NCDR (National Cardiovascular Data Registry)**

2. **100. Doll: Current patterns of anti-platelet treatment among acute myocardial infarction patients on home clopidogrel therapy**

2. **244B.** Masoudi FA, Curtis JP, Desai, NR; PCI Appropriateness in New York. JACC. 2017; 69 (10): 1243-1246

3. **327.** Sapontis, J., Marso, SP, Cohen, DJ, et al.; The Outcomes, Patient Health Status, and Efficiency IN Chronic Total Occlusion Hybrid Procedures registry: rationale and design; CAD; 2017, 28(2): 110-119

5. **393P/156.** Amin AP, Patterson M, House JA, et al; Costs Associated With Access Site and Same-Day Discharge Among Medicare Beneficiaries Undergoing Percutaneous Coronary Intervention: An Evaluation of the Current Percutaneous Coronary Intervention Care Pathways in the United States; JACC:Cardiovascular Interventions, 2/27/2017, Volume 10; Issue 4; Pages 342-351

7. **367P.** Rymer, JA, Harrison, RW, Dai, D, et al; Trends in Bare-Metal Stent Use in the United States in Patients Aged ≥ 65 Years (from the CathPCI Registry); American Journal of Cardiology; 10/1/2016; Volume 118; Issue 7; Pages 959-966

9. **466P.** Motivala, AA, Parikh, V, Roe, M, et al; Predictors, Trends, and Outcomes (Among Older Patients >65 Years of Age) Associated With Beta-Blocker Use in PatientsWith Stable AnginaUndergoing Elective Percutaneous Coronary Intervention Insights From the NCDR Registry; JACC:CI; 2016; Volume 9; No. 16; Pgs 1639-1648

10. **468P.** Baber, U; Giustino, G; Wang, T; et al.; Comparisons of the uptake and in-hospital outcomes associated with second-generation drug-eluting stents between men and women: results from the CathPCI Registry; Coronary Artery Disease; 2016/9;Volume 27, Issue 6; Page 442–448

12. **212.** Vora, AN, Dai, D, Gurm, H, et al; Temporal Trends in the Risk Profile of Patients Undergoing Outpatient Percutaneous Coronary Intervention A Report from the National Cardiovascular Data Registry’s CathPCI Registry; Circulation: Cardiovascular Interventions; March 8, 2016; Volume 9; Issue 3;e003070
13. 354P. Vora, AN, Peterson, ED, McCoy, LA, et al. The Impact of Bleeding Avoidance Strategies on Hospital-Level Variation in Bleeding Rates Following Percutaneous Coronary Intervention: Insights From the National Cardiovascular Data Registry CathPCI Registry; JACC:CI; 4/25/2016; Vol. 9; No. 8; Page 771-779

15. 365P. Anderson L, Dai D, Miller AL, et al. Percutaneous Coronary Intervention for Older Adults Who Present with Syncope and Coronary Artery Disease? Insights from the National Cardiovascular Data Registry®. AHJ.6/2016; Vol 176; pages 1-9

17. 270P. Wang TY, McCoy LA, Bhatt DL, et al.; Multivessel vs culprit-only percutaneous coronary intervention among patients 65 years or older with acute myocardial infarction; American Heart Journal, Volume 172, February 2016, Pages 9-18

18. 394P. Safley DM et al. Impact of Glycoprotein IIb/IIIa Inhibition in Contemporary Percutaneous Coronary Intervention for Acute Coronary Syndromes: Insights From the National Cardiovascular Data Registry. JACC: Cardiovascular Interventions, Volume 8, Issue 12, October 2015, Pages 1574-1582

19. 467P. Tracy Y. Wang, MD, MHS, MSC, Cindy Grines, MD, Rebecca Ortega, MS, et al. Women in Interventional Cardiology: Update in Percutaneous Coronary Intervention Practice Patterns and Outcomes of Female Operators From the National Cardiovascular Data Registry. Catheterization and Cardiovascular Interventions August 10, 2015. Published online ahead of print. DOI: 10.1002/ccd.26118.

20. 535P. Amneet Sandhu, MD; Lisa A. McCoy, Smita I. Negi, MD; et al. Utilization of Mechanical Circulatory Support in Patients Undergoing Percutaneous Coronary Intervention: Insights From the NCDR. Circulation. 2015; published online before print August 18 2015, doi:10.1161/CIRCULATIONAHA.114.014451

26. **264.** Desai NR, Parzynski CS, Krumholz HM, et al. Patterns of Institutional Review of Percutaneous Coronary Intervention Appropriateness and the Effect on Quality of Care and Clinical Outcomes, JAMA Internal Medicine, 2015, November 09

29. **378P.** Paul N. Fiorilli, Karl E. Minges, Jeptha P. Curtis, et al. Association of Physician Certification in Interventional Cardiology with In-Hospital Outcomes of Percutaneous Coronary Intervention. Circulation. Published online before print September 18, 2015, doi: 10.1161/CIRCULATIONAHA.115.017523

30. **253P-A:** Brennan J. Safety and Clinical Effectiveness of Drug-Eluting Stents for Saphenous Vein Graft Stenting in Older Individuals: Results from the Medicare-linked National Cardiovascular Data Registry® CathPCI Registry® (2005-2009)

34. **448P:** Rajesh V. Swaminathan, MD,* Sunil V. Rao, MD,y Lisa A. McCoy, et al. Hospital Length of Stay and Clinical Outcomes in Older STEMI Patients After Primary PCI A Report From the National Cardiovascular Data Registry. J Am Coll Cardiol Mar 31 2015;65:12;1161–71.

42. **372P**: Thomas T. Tsai, MD, MSc; Uptal D. Patel, MD; Tara I. Chang, MD; et al. Validated Contemporary Risk Model of Acute Kidney Injury in Patients Undergoing Percutaneous Coronary Interventions: Insights From the National Cardiovascular Data Registry Cath-PCI Registry. JAHA 2014 December 16;Vol 3(6); doi:10.1161/JAHA.114.001380.

48. **452P.** Steven M. Bradley, Sunil V. Rao, Jeptha P. Curtis, et al. Change in Hospital-Level Use of Transradial Percutaneous Coronary Intervention and Periprocedural Outcomes: Insights from the National Cardiovascular Data Registry. Circ Cardiovase Qual Outcomes. 2014; CIRCOUTCOMES 114.001020, published online before print June 4 2014, doi:10.1161/CIRCOUTCOMES.114.001020

49. **398P.** Connie N. Hess, Eric D. Peterson, Megan L. Neely, et al. The Learning Curve for Transradial Percutaneous Coronary Intervention among Operators in the United States: A Study from the National Cardiovascular Data Registry. CIRCULATIONAHA.113.006356 Published online before print April 22, 2014, doi: 10.1161/CIRCULATIONAHA.113.006356

53. **357P.** Beau M. Hawkins, MD; Lisa A. McCoy, MS; Megan Neely, PhD, et al. Impact of Academic Year Timing on PCI Outcomes at Training Institutions. JACC. March 18, 2014;63:10;1025-30.

56. **244P.** Navdeep Gupta, MBBSa,*, Michael C. Kontos, MD b, Aditi Gupta, MBBS c, et al. Characteristics and Outcomes in Patients Undergoing Percutaneous Coronary Intervention Following Cardiac Arrest (from the NCDR). Published online before print. Am J Cardiol 2014. doi:10.1016/j.amjcard.2013.12.014

58. **241P.** Chee Tang Chin, John C. Messenger, David Dai, Comparison of percutaneous coronary intervention for previously treated versus de novo culprit lesions in acute myocardial infarction patients: insights from the National Cardiovascular Data Registry. Am Heart J 2014;0:1-8.e1

60. **215P-F.** Kutchter MA, Brennan JM, Rao SV, et al. Comparative effectiveness of drug-eluting stents on long-term outcomes in elderly patients treated for in-stent restenosis: A report from the national cardiovascular data registry. Catheterization and Cardiovascular Interventions 00:00–00 (2013). Published online before print November 12, 2013. DOI: 10.1002/ccd.25108

66. **159P-B.** Borden WB, Spertus JA, Mushlin AI, et al. Antianginal Therapy Before Percutaneous
Coronary Intervention. Circ Cardiovasc Interv. 2013 published online before print August 6 2013, doi:10.1161/CIRCINTERVENTIONS.112.000215

123. 178P. Peterson ED, Dai D, DeLong ER, et al. Contemporary Mortality Risk Prediction for Percutaneous Coronary Intervention: Results from 588,398 Procedures in the National Cardiovascular Data Registry. JACC. Mar 31, 2010; published online ahead of print;doi:10.1016/j.jacc.2010.02.005

143. **047P.** Shaw LJ, Shaw RE, Merz CN, et al. Impact of Ethnicity and Gender Differences on Angiographic Coronary Artery Disease Prevalence and In-Hospital Mortality in the American College of Cardiology National Cardiovascular Data Registry. Circulation 2008;117;1787-1801.

177. **118P.** Weintraub WS. Development of the American College of Cardiology National

IN PRESS

1. Chui, P Correlation Among Hospital PCI Process Measures and Relationship with 30-day PCI Readmission and Mortality

2. Minges, K Development and validation of a simple risk score to predict 30-day readmission for percutaneous coronary intervention

ICD Registry™

PUBLISHED

14. **015-I.** Lampert R, Wang Y, Curtis J. Variation among hospitals in selection of higher-cost, “higher tech,” implantable cardioverter-defibrillators: Data from the National Cardiovascular

31. **028-I.** Matlock DD, Peterson PN, Heidenreich PA, et al. Regional Variation in the Use of Implantable Cardioverter-Defibrillators for Primary Prevention: Results From the National Cardiovascular Data Registry. Circ Cardiovasc Qual Outcomes 2011;4;114-121.

70. 79 (192-I). Friedman D, Singh J, Curtis J, et al. Comparative Effectiveness of Cardiac Resynchronization Therapy with Defibrillator versus Defibrillator Alone in Heart Failure Patients with Moderate to Severe Chronic Kidney Disease. JACC. 2015; 65(10S)

77. 101. Friedman DJ, Parzynski CS, Varosy PD, et al. Trends and In-Hospital Outcomes Associated with Adoption of the Subcutaneous Implantable Cardioverter Defibrillator in the United States; JAMA Cardiology Online; September 7, 2016.

Cardioverter-Defibrillator Lead Abandonment Versus Explantation for Unused or Malfunctioning Leads. Circ Arrhythm Electrophysiology 2016; e003953.

80. **135.** Kramer DB, Reynolds MR, Normand S-L, et al. Hospice Use Following Implantable Cardioverter-Defibrillator Implantation in Older Patients Results From the National Cardiovascular Data Registry; Circulation. 2016;133:2030- 2037.

82. **100.** Echouffo-Tcheugui JB, Masoudi FA, Ba H, et al; Effect of Diabetes on Outcomes of Cardiac Resynchronization Therapy and Implantable Cardioverter-Defibrillator Therapy in People with Heart Failure; Circ Arrhythm Electrophysiol. 2016;9:e004132.

IN PRESS

1. **102.** Marzec, L. Hospital Variation in the Utilization of Cardiac Resynchronization Therapy among Eligible Patients Receiving an Implantable Cardioverter-Defibrillator: Insights from the NCDR.

2. **83.** Pokorney, S. Temporal Trends and Variations in the Use of Single Coil Versus Dual Coil ICD Leads
1. **53C.** Aronow, HD, Kennedy, KF, Wayangankar, SA, et al; Prescription of Guideline-Based Medical Therapies at Discharge After Carotid Artery Stenting and Endarterectomy: An NCDR Analysis; Stroke; 8/2016;47:00:00

11. **11C-A.** Don CW, House J, White C, et al. Carotid revascularization immediately before urgent cardiac surgery practice patterns associated with the choice of carotid artery stenting or endarterectomy: a report from the CARE (Carotid Artery Revascularization and Endarterectomy) registry. JACC Cardiovasc

IN PRESS

3. 003M. Vincent RN, Moore J, Beekman III RH, et al. Procedural characteristics and adverse events in diagnostic and interventional catheterizations in paediatric and adult CHD: initial report from the IMPACT Registry. Cardiology in the Young; March 19, 2015; online before print; doi:10.1017/S1047951114002637.

4. 09M. Jayaram N, Beekman RH, Benson L, et al., Adjusting for Risk Associated With Pediatric and Congenital Cardiac Catheterization: A Report From the NCDR IMPACT Registry; Circ; 2015; 132; 1863-1870

5. 08M. Holzer R, Beekman R, Benson L, et al.; Characteristics and safety of interventions and procedures performed during catheterization of patients with congenital heart disease: early report from the national cardiovascular data registry; Cardiology in the Young; 2015

7. 13M. O'Byrne, ML; Gillespie, MJ; Kennedy, KF, et al; The influence of deficient retro-aortic rim on technical success and early adverse events following device closure of secundum atrial septal defects:An Analysis of the IMPACT Registry®; CCI; 5/18/2016

8. 18M/8. Jayaram, N, Spertus, JA, O'Byrne, ML; Relationship between hospital procedure volume and complications following congenital cardiac catheterization: A report from the IMproving Pediatric and Adult Congenital Treatment (IMPACT) registry; AHJ; 1/2017;Vol 183; Pages 118-128

IN PRESS
PINNACLE Registry®

PUBLISHED

33. **71.** Gehi, A. Factors associated with rhythm control treatment decisions in patients with atrial fibrillation—Insights from the NCDR PINNACLE registry

IN PRESS

1. **86.** Pokharel, Y. Trends and Predictors of Statin Use Before and After the Publication of the 2013 American College of Cardiology/American Heart Association (ACC/AHA) Guideline on the Treatment of Blood Cholesterol: Insights from the NCDR® PINNACLE Registry

3. **130.** Bradley, S. Implications of the PEGASUS-TIMI 54 Trial for U.S. Cardiovascular Practice: Insights from the NCDR PINNACLE Registry

4. **90.** Maddox, T. Implications of the IMPROVE-IT Trial for U.S. Cardiovascular Practice: Insights from the NCDR PINNACLE Registry
TVT Registry

PUBLISHED

21. Chandrasekhar, J, Dangas, G, Yu, J, et al.; Sex-Based Differences in Outcomes With Transcatheter Aortic Valve Therapy; JACC; 12/2016;Vol 68 No. 25; Pages 2733-44

IN PRESS

1. **34.** Hira, R. Trends, Predictors and Adverse Outcomes of Off-Label Use of Transcatheter Aortic Valve Replacement (TAVR): Insights from the NCDR® STS/ACC TVT Registry.

2. **174.** Abramowitz. Outcomes of Transcatheter Aortic Valve Replacement in Patients with Diabetes Mellitus

3. **106.** Carroll, J. The Relationship Between Hospital Procedure Volume and Outcomes (Complications) of Transcatheter Aortic Valve replacement from the STS---ACC TVT Registry.
NCDR-wide Publications

PUBLISHED

IN PRESS